Problem with solution proposed by Arkady Alt , **San Jose** , **California**, **USA** .

Prove that for any real $p > 1$ and $x > 1$ holds inequality $\frac{\ln x}{\ln(x+p)}$ $\leq \left(\frac{\ln(x+p-1)}{\ln(x+p)} \right)$ *p* .

Solution.

Note that $\frac{\ln x}{\ln(x+p)}$ $\leq \left(\frac{\ln(x+p-1)}{\ln(x+p)} \right)$ $p^p \Leftrightarrow \ln x \cdot \ln^{p-1}(x+p) \le \ln^p(x+p-1).$ Since $\ln \ln x$ is concave down on (e^{-1}, ∞) then for any $x_1, x_2, ..., x_n \in (1, \infty)$ and positive weights p_1, p_2, \ldots, p_n such that $p_1 + p_2 + \ldots + p_n = 1$ holds wighted Jensen's nequality p_1 ln ln $x_1 + p_2$ ln ln $x_2 + ... + p_n$ ln ln $x_n \leq \ln \ln(p_1x_1 + p_2x_2 + ... + p_nx_n) \Leftrightarrow$ (1) $\ln^{p_1}x_1 \cdot \ln^{p_2}x_2 \cdot \ln^{p_n}x_n \leq \ln(p_1x_1 + p_2x_2 + \ldots + p_nx_n).$ In particular for $x_1 = x, x_2 = x + p, p_1 = \frac{1}{p}$ $\frac{1}{p}$, $p_2 = \frac{p-1}{p}$ $\frac{1}{p}$ we have $\ln \frac{1}{p} x \cdot \ln \frac{p-1}{p} (x+p) \leq \ln \left(\frac{x}{p} + \frac{(p-1)(x+p)}{p} \right) = \ln \left(\frac{x+p^2-p-x+px}{p} \right)$ $\left(\frac{p-x+px}{p}\right) = \ln(x+p-1) \Leftrightarrow$ (2) $\ln x \cdot \ln^{p-1}(x+p) \leq \ln^p(x+p-1)$. Using inequality (2) we obtain \prod \overline{k} ₂ \prod^{n+1} $\ln k$ $\frac{\ln k}{\ln(k+p)} \leq \prod_{k=2}$ \overline{k} ₂ $\prod_{k=2}^{n+1} \left(\frac{\ln(k+p-1)}{\ln(k+p)} \right)$ $p^p = \left(\frac{\ln(2 + p - 1)}{\ln(n + 1 + p)} \right)$ $p^p = \frac{\ln^p(1+p)}{\ln^p(n+1+p)}$. Hence, ∑ $\overline{n-1}$ $\sum_{n=1}^{\infty}$ $\frac{1}{n} \cdot \prod_{i=2}^n$ \overline{k} ₂ \prod^{n+1} $\frac{\ln k}{k}$ $\frac{\ln k}{\ln(k+p)} \leq \ln^p(1+p)\sum_{n=1}$ $\overline{n-1}$ $\sum_{n=1}^{\infty}$ $\frac{1}{n}$ $\frac{1}{n \ln^p (n+1+p)} < \ln^p (1+p) \sum_{n=1}$ $\overline{n-1}$ $\sum_{n=1}^{\infty}$ $n \ln^p n$,

where latter series is convergent.

Remark.

Inequality (1) and (2) can be proved by elementary way for any rational weights. First we will prove one auxiliary inequality

(3) $\ln(x - h) \ln(x + h) \le \ln^2 x, x > 0$ and $0 \le h < x$. **Proof 1**.

$$
\ln(x-h)\ln(x+h) \le \left(\frac{\ln(x-h) + \ln(x+h)}{2}\right)^2 = \left(\frac{\ln(x^2-h^2)}{2}\right)^2 \le \left(\frac{\ln(x^2)}{2}\right)^2 = \ln^2 x.
$$

Proof 2.

$$
\ln(x - h)\ln(x + h) = \left(\ln x + \ln\left(1 - \frac{h}{x}\right)\right)\left(\ln x + \ln\left(1 + \frac{h}{x}\right)\right) = \ln^2 x + \ln x \cdot \ln\left(1 - \frac{h^2}{x^2}\right) + \ln\left(1 - \frac{h}{x}\right) \cdot \ln\left(1 + \frac{h}{x}\right) \le \ln^2 x \text{ since } \ln\left(1 - \frac{h^2}{x^2}\right) \le 0 \text{ and } \ln\left(1 - \frac{h}{x}\right) \le 0.
$$

\nFrom inequality (3) follows that for any $x_1, x_2 > 1$ holds inequality
\n(4) $\ln x_1 \ln x_2 \le \ln^2 \frac{x_1 + x_2}{2}$.
\nIndeed, by setting $x := \frac{x_1 + x_2}{2}$ and $h := \frac{|x_2 - x_1|}{2}$ inequality (4) becomes (3).
\nSuppose that inequality $\ln x_1...\ln x_k \le \ln^k \frac{x_1 + ... + x_k}{k}$ holds for any $2 \le k < n$.
\nFor $n = 2m$ inequality $\ln x_1...\ln x_n \le \ln^n \frac{x_1 + ... + x_n}{n}$ can be obtained by doubling procedure.
\nIf $n = 2m - 1$ and $x_1,...,x_{2m-1} > 1$ then for $n + 1 = 2m$ numbers $x_1,...,x_{n-1}x_{n-1}$ where

If $n = 2m - 1$ and $x_1, \ldots, x_{2m-1} > 1$ then for $n + 1 = 2m$ numbers $x_1, \ldots, x_n, x_{n+1}$ $_1$ where $x_{n+1} := \frac{x_1 + ... + x_n}{n}$ $\frac{n+1}{n}$ we have $\ln x_1 ... \ln x_n \ln x_{n+1} \leq \ln^{n+1} \frac{x_1 + ... + x_n + x_{n+1}}{n+1}$ $=$

 $\ln^{n+1} \frac{n x_{n+1} + x_{n+1}}{n+1} = \ln^{n+1} x_{n+1} \Leftrightarrow \ln x_1 ... \ln x_n \le \ln^n x_{n+1}.$ Let $x_1 = ... = x_m = a, x_{m+1} = ... = x_n = b$ then we obtain inequality $\ln^m a \cdot \ln^{n-m} b \leq \ln^n \frac{ma + (n-m)b}{n} \iff \ln^p a \cdot \ln^q b \leq \ln^n (pa + qb),$ where $p := \frac{m}{n}$ $\frac{m}{n}, q := \frac{n-m}{n}$ $\frac{-m}{n}$.

Generalization.

Let f be logarithmicly concave down on interval *I* function. Then for any $x \in I$ and any positive

 $p > 1$, such that $x + p \in I$, holds inequality

(5)
$$
\frac{f(x)}{f(x+p)} \leq \left(\frac{f(x+p-1)}{f(x+p)}\right)^p.
$$

First recall definition of logarithmicly concave function.

Definition.

Function *f* is logarithmicly concave down on interval *I* if *f* is positive on *I* and ln *f* is concave down on *I*.

Thus, for any $x_1, x_2 \in I$ we have inequality $\frac{\ln f(x_1) + \ln f(x_2)}{2} \ge \ln f\left(\frac{x_1 + x_2}{2}\right)$ $\frac{+x_2}{2}$ \Rightarrow . $f(x_1) \cdot f(x_2) \geq f^2 \left(\frac{x_1 + x_2}{2} \right)$ $\frac{+x_2}{2}$).

Further by the same procedure we obtain regular Jensen Inequality *f*(*x*₁) \cdot *f*(*x*₂) \cdot ... \cdot *f*(*x*_n) \geq *fⁿ*($\frac{x_1 + x_2 + \dots + x_n}{n}$ $\frac{+\ldots+x_n}{n}$, $x_1, x_2, \ldots, x_2 \in I$ and, further, weighted Jensen's Inequality with positive rational weights p_1, p_2, \ldots, p_n : $f^{p_1}(x_1) \cdot f^{p_2}(x_2) \cdot \ldots \cdot f^{p_n}(x_n) \geq f^{p_1+p_2+\ldots+p_n} \left(\frac{p_1x_1 + p_2x_2 + \ldots + p_nx_n}{p_1 + p_2 + \ldots + p_n} \right)$ $\frac{p_1 + p_2x_2 + \ldots + p_nx_n}{p_1 + p_2 + \ldots + p_n}$. Using limit representation of real numbers we extend this inequality on real weights.

In particular for $x_1 = x, x_2 = x + p, x \in I, p > 1, x + p \in I$ and weights $\frac{1}{p}, \frac{p-1}{p}$ $\frac{1}{p}$ we obtain inequality (5).