Problem with solution proposed by Arkady Alt, San Jose, California, USA.

Prove that for any real p > 1 and x > 1 holds inequality $\frac{\ln x}{\ln(x+p)} \leq \left(\frac{\ln(x+p-1)}{\ln(x+p)}\right)^p$.

Solution.

Note that $\frac{\ln x}{\ln(x+p)} \leq \left(\frac{\ln(x+p-1)}{\ln(x+p)}\right)^p \Leftrightarrow \ln x \cdot \ln^{p-1}(x+p) \leq \ln^p(x+p-1).$ Since $\ln \ln x$ is concave down on (e^{-1}, ∞) then for any $x_1, x_2, \ldots, x_n \in (1, \infty)$ and positive weights p_1, p_2, \ldots, p_n such that $p_1 + p_2 + \ldots + p_n = 1$ holds wighted Jensen's nequality $p_1 \ln \ln x_1 + p_2 \ln \ln x_2 + \dots + p_n \ln \ln x_n \le \ln \ln (p_1 x_1 + p_2 x_2 + \dots + p_n x_n) \iff$ (1) $\ln^{p_1} x_1 \cdot \ln^{p_2} x_2 \cdot \ln^{p_n} x_n \leq \ln(p_1 x_1 + p_2 x_2 + \ldots + p_n x_n).$ In particular for $x_1 = x, x_2 = x + p, p_1 = \frac{1}{p}, p_2 = \frac{p-1}{p}$ we have $\ln^{\frac{1}{p}}x \cdot \ln^{\frac{p-1}{p}}(x+p) \le \ln\left(\frac{x}{p} + \frac{(p-1)(x+p)}{p}\right) = \ln\left(\frac{x+p^2-p-x+px}{p}\right) = \ln(x+p-1) \Leftrightarrow$ (2) $\ln x \cdot \ln^{p-1}(x+p) \le \ln^p(x+p-1)$. Using inequality (2) we obtain $\prod_{k=2}^{n+1} \frac{\ln k}{\ln(k+p)} \le \prod_{k=2}^{n+1} \left(\frac{\ln(k+p-1)}{\ln(k+p)} \right)^p = \left(\frac{\ln(2+p-1)}{\ln(n+1+p)} \right)^p = \frac{\ln^p(1+p)}{\ln^p(n+1+p)}.$ Hence, $\sum_{n=1}^{\infty} \frac{1}{n} \cdot \prod_{k=2}^{n+1} \frac{\ln k}{\ln(k+p)} \leq \ln^p (1+p) \sum_{n=1}^{\infty} \frac{1}{n \ln^p (n+1+p)} < \ln^p (1+p) \sum_{n=1}^{\infty} \frac{1}{n \ln^p n}$,

where latter series is convergent.

Remark.

Inequality (1) and (2) can be proved by elementary way for any rational weights. First we will prove one auxiliary inequality

(3) $\ln(x-h)\ln(x+h) \le \ln^2 x, x > 0$ and $0 \le h < x$. Proof 1.

$$\ln(x-h)\ln(x+h) \le \left(\frac{\ln(x-h) + \ln(x+h)}{2}\right)^2 = \left(\frac{\ln(x^2-h^2)}{2}\right)^2 \le \left(\frac{\ln(x^2)}{2}\right)^2 = \ln^2 x.$$
Proof 2

Proof 2.

$$\ln(x-h)\ln(x+h) = \left(\ln x + \ln\left(1-\frac{h}{x}\right)\right) \left(\ln x + \ln\left(1+\frac{h}{x}\right)\right) = \ln^2 x + \ln x \cdot \ln\left(1-\frac{h^2}{x^2}\right) + \ln\left(1-\frac{h}{x}\right) \cdot \ln\left(1+\frac{h}{x}\right) \le \ln^2 x \text{ since } \ln\left(1-\frac{h^2}{x^2}\right) \le 0 \text{ and } \ln\left(1-\frac{h}{x}\right) \le 0.$$

From inequality (3) follows that for any $x_1, x_2 > 1$ holds inequality
(4) $\ln x_1 \ln x_2 \le \ln^2 \frac{x_1+x_2}{2}$.
Indeed, by setting $x := \frac{x_1+x_2}{2}$ and $h := \frac{|x_2-x_1|}{2}$ inequality (4) becomes (3).
Suppose that inequality $\ln x_1 \dots \ln x_k \le \ln^k \frac{x_1+\dots+x_k}{k}$ holds for any $2 \le k < n$.
For $n = 2m$ inequality $\ln x_1 \dots \ln x_n \le \ln^n \frac{x_1+\dots+x_n}{n}$ can be obtained by doubling procedure.

If n = 2m - 1 and $x_1, \dots, x_{2m-1} > 1$ then for n + 1 = 2m furthers x_1, \dots, x_n , $x_{n+1} := \frac{x_1 + \dots + x_n}{n}$ we have $\ln x_1 \dots \ln x_n \ln x_{n+1} \le \ln^{n+1} \frac{x_1 + \dots + x_n + x_{n+1}}{n+1} =$

 $\ln^{n+1}\frac{nx_{n+1}+x_{n+1}}{n+1} = \ln^{n+1}x_{n+1} \Leftrightarrow \ln x_1 \dots \ln x_n \leq \ln^n x_{n+1}.$ Let $x_1 = \dots = x_m = a, x_{m+1} = \dots = x_n = b$ then we obtain inequality $\ln^m a \cdot \ln^{n-m} b \leq \ln^n \frac{ma+(n-m)b}{n} \Leftrightarrow \ln^p a \cdot \ln^q b \leq \ln^n (pa+qb),$ where $p := \frac{m}{n}, q := \frac{n-m}{n}$.

Generalization.

Let *f* be logarithmicly concave down on interval *I* function. Then for any $x \in I$ and any positive

p > 1, such that $x + p \in I$, holds inequality

(5)
$$\frac{f(x)}{f(x+p)} \le \left(\frac{f(x+p-1)}{f(x+p)}\right)^p$$

First recall definition of logarithmicly concave function.

Definition.

Function f is logarithmicly concave down on interval I if f is positive on I and $\ln f$ is concave down on I.

Thus, for any $x_1, x_2 \in I$ we have inequality $\frac{\ln f(x_1) + \ln f(x_2)}{2} \ge \ln f\left(\frac{x_1 + x_2}{2}\right) \Leftrightarrow f(x_1) \cdot f(x_2) \ge f^2\left(\frac{x_1 + x_2}{2}\right).$

Further by the same procedure we obtain regular Jensen Inequality $f(x_1) \cdot f(x_2) \cdot \ldots \cdot f(x_n) \ge f^n \left(\frac{x_1 + x_2 + \ldots + x_n}{n}\right), x_1, x_2, \ldots, x_2 \in I$ and, further, weighted Jensen's Inequality with positive rational weights p_1, p_2, \ldots, p_n : $f^{p_1}(x_1) \cdot f^{p_2}(x_2) \cdot \ldots \cdot f^{p_n}(x_n) \ge f^{p_1+p_2+\ldots+p_n} \left(\frac{p_1x_1 + p_2x_2 + \ldots + p_nx_n}{p_1 + p_2 + \ldots + p_n}\right).$ Using limit representation of real numbers we extend this inequality on real weights.

In particular for $x_1 = x, x_2 = x + p, x \in I, p > 1$, $x + p \in I$ and weights $\frac{1}{p}, \frac{p-1}{p}$ we obtain inequality (5).